SURGICAL TECHNIQUE.
The Medline Unite® Foot Plating System is an indication-specific implant system for foot reconstruction thoughtfully designed to address the specific needs of the patient, surgeon and surgical team.

The system is based on our single-minded philosophy of Intelligent Design: To manufacture clinically advanced products with optimal functionality that are intuitive to use.

MTP Fusion ... 8
Lapidus ... 12
TMT Fusion .. 16
Evans Osteotomy ... 20
Cotton Osteotomy ... 24
MDCO ... 28
Ordering Information .. 32

Design Surgeon
J. Kent Ellington, MD
OrthoCarolina
Charlotte, NC
FEATURES AND BENEFITS.

Minimal Profile
» Plates are fabricated with an exceptionally smooth, beveled edge to minimize soft tissue irritation for greater patient comfort.

Stronger Implants
» 15% stronger than a leading competitor to withstand post-operative implant stress.*

Anatomically Contoured Plates
» Specifically and diligently shaped to the unique anatomical structures of the foot for a better, tighter fit.

Polyaxial Locking
» Flexible screw configurations built into the plate provide for up to 15° off axis locking to promote customized, patient-specific fixation.

Optimized Compression
» Compression slots are strategically located for placement in hard diaphyseal bone to encourage more effective compression at the joint to enhance the healing process.

Universal Plate Holes
» All plates accept both 2.7 mm and 3.5 mm locking and non-locking screws, providing greater surgical flexibility.

Color-Coded System
» The color-coded system matches instruments to the appropriate screws for easier and quicker identification.

Intuitive Application
» Instruments and implants are arranged in order of procedure flow for greater efficiency.

“The Medline Unite Foot Plating System has improved upon the deficiencies of existing foot plating systems to help deliver better patient outcomes. The implants are stronger, fit the foot better, offer polyaxial locking, and achieve optimal compression at the joint to promote ideal healing. And, the whole system is intuitive to use, which helps the staff and surgeon perform the procedure efficiently and reduce the risk of error.”

J. Kent Ellington, MD
OrthoCarolina

“Data on File
INDICATIONS FOR USE.

The Medline Unite Foot Plating System is intended for use in the following procedures:

Arthrodesis of the first metatarsocuneiform joint (Lapidus Fusion)
Arthrodesis of the first metatarsophalangeal joint (MTP), including:
» Primary MTP Fusion due to hallux rigidus and/or hallux valgus
» Revision MTP Fusion
» Revision of failed first MTP Arthroplasty implant

Flatfoot Osteotomies
» Lateral Column Lengthening (Evans Osteotomy)
» Plantar Flexion Opening Wedge Osteotomy of the Medial Cuneiform (Cotton Osteotomy)
» Medial Displacement Calcaneal Osteotomy (MDCO)

Midfoot/Hindfoot Fusions
» LisFranc Arthrodesis and/or Stabilization
» 1st (Lapidus), 2nd, 3rd, 4th, and 5th Tarsometatarsal (TMT) Fusions
» Intercuneiform Fusions
» Navicular-Cuneiform (NC) Fusion
» Talo-Navicular (TN) Fusion
» Calcaneo-Cuboid (CC) Fusion
» Medial Column Fusions (NC and 1st TMT)

The Medline locking and non-locking cortical screws are indicated for use with the Medline foot plates of the same base material. The non-locking cortical screws are also indicated for bone reconstruction, osteotomy, arthrodesis, joint fusion, fracture repair, and fracture fixation, appropriate for the size of the device.

IMPLANT SELECTION.

The Medline Unite Foot Plating System contains an extensive selection of plates, screws and instruments for the most frequently performed procedures.

<table>
<thead>
<tr>
<th>MTP PLATES</th>
<th>LAPIDUS PLATES</th>
<th>TMT PLATES</th>
<th>COTTON PLATE</th>
<th>EVANS PLATE</th>
<th>MDCO PLATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTP Fusion</td>
<td>MTP Revision</td>
<td>Lapidus</td>
<td>Lapidus Stop</td>
<td>TMT Offset</td>
<td>TMT Straight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Step</td>
<td></td>
<td>Cotton</td>
<td></td>
</tr>
<tr>
<td>Sizes</td>
<td>Sml/Med</td>
<td>0°, 5°, 10°</td>
<td>1 size</td>
<td>4, 5 Hole</td>
<td>2 size</td>
</tr>
<tr>
<td></td>
<td>Dorsiflexion</td>
<td></td>
<td>1 size</td>
<td>2, 3, 4, 5</td>
<td>4 size</td>
</tr>
<tr>
<td></td>
<td>0°, 5°, 10°</td>
<td></td>
<td>1 size</td>
<td>6 sizes</td>
<td>6 sizes</td>
</tr>
<tr>
<td>Left/Right/Uni.</td>
<td>Left/Right</td>
<td>Left/Right</td>
<td>Universal</td>
<td>Universal</td>
<td>Universal</td>
</tr>
</tbody>
</table>

HALLUX RIGIDUS PROCEDURES

MTP Primary Fusion

MTP Revision

MTP Arthroplasty Revision

HALLUX VALGUS PROCEDURES

Lapidus Fusion

MIDFOOT FUSIONS

LisFranc

1st, 2nd, 3rd, 4th, 5th TMT Fusions

Intercuneiform Fusions

TN Fusion

CC Fusion

NC Fusion

FLATFOOT RECONSTRUCTION

Cotton Osteotomy

Evans Osteotomy

MDC Osteotomy
MTP FUSION.

1. **Surgical Approach**
 - Perform a dorsal longitudinal incision beginning just proximal to the interphalangeal joint and ending 2-3 cm proximal to the MTP joint.

2. **Bone Preparation**
 - **A. Metatarsal Reaming**
 - Expose the metatarsal head by displacing the phalanx plantarly.
 - Place a 1.6 mm guidewire into the center of the metatarsal head using a power driver.
 - Place the metatarsal reamer over the wire and begin to ream. Reamer should be spinning prior to touching bone.
 - Use progressively smaller reamers to remove all articular cartilage exposing bleeding bone.

 - **B. Phalangeal Reaming**
 - Expose the proximal phalanx by displacing the phalanx plantarly.
 - Place a 1.6 mm guidewire into the center of the proximal phalanx using a power driver.
 - Place the phalangeal reamer over the wire and begin to ream. Reamer should be spinning prior to touching bone.
 - Use progressively larger reamers, finishing with the same diameter as previously used for the metatarsal reaming to ensure congruent joint surfaces. Remove all articular cartilage exposing bleeding bone.
 - The 1.6 mm wire may be used to perforate the reamed surfaces of the metatarsal head and base of the proximal phalanx.
 - Bone graft may be used as needed to facilitate joint fusion.

3. **Plate Verification**
 - Thread the appropriate drill guide into the plate and use drill guide as a “joy-stick” to verify proper plate selection.

4. **Plate Bend**
 - Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5. **Provisional Fixation**
 - The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.
 - Place the 1.1 x 150 mm guidewire across the plantar aspect of the joint. Verify placement of the wire fluoroscopically.
 - Place the depth gauge over the wire to determine screw length. If the screw will be left proud, add the screw head height to the selected screw.
 - Place the countersink over the guidewire and countersink under manual power to recess the head of the screw to the desired depth. Avoid over-countersinking which may compromise the proximal cortex. Washers may be used if the proximal cortex is compromised.
 - Place the drill over the guidewire and drill just past the joint.
 - Place the screw over the guidewire and drive under manual power until screw is fully seated. Verify the final placement fluoroscopically.

6. **Interfragmentary Cannulated Screw Placement**
 - Place the 1.1 x 150 mm guidewire across the plantar aspect of the joint. Verify placement of the wire fluoroscopically.
 - Place the depth gauge over the wire to determine screw length. If the screw will be left proud, add the screw head height to the selected screw.
 - Place the countersink over the guidewire and countersink under manual power to recess the head of the screw to the desired depth. Avoid over-countersinking which may compromise the proximal cortex. Washers may be used if the proximal cortex is compromised.
 - Place the drill over the guidewire and drill just past the joint.
 - Place the screw over the guidewire and drive under manual power until screw is fully seated. Verify the final placement fluoroscopically.
Screw Fixation

» Place the screws in the MTP fusion plate in the following order by zone.

1 On-Axis Drilling*

» Select the locking drill guide that corresponds with desired pre-drill size.
» Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

2 Measure

» A standard style depth gauge is also provided.

3 Off-Axis Drilling*

» Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

4 Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

5 Compression Slots

» After fixation of the plate on the adjacent side of the joint, drill the compression slot first.
» Pre-drill on the side of the compression slot furthest from the joint using the provided offset tissue protector.
» Measurement can be taken from the drill bit at the top of the tissue protector.
» Insert a non-locking screw into the compression hole, removing the temporary fixation pin prior to fully tightening the screw.
» Ensure bicortical fixation for maximum compression.

6 Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

7 Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.
LAPIDUS.

1 Surgical Approach
- Perform dorsomedial incision just medial to the EHL tendon extending 2-3 cm on either side of the 1st TMT joint.

2 Joint Preparation
- Position the distractor over the joint.
- Using the distractor as a guide, insert one 2.5 mm distractor pin on each side of the joint.
- Distract the joint until adequate exposure is achieved.
- Remove all articular cartilage exposing bleeding bone.
- The 1.6 mm wire may be used to perforate the decorticated joint surfaces.
- Bone graft may be used as needed to facilitate joint fusion.

3 Plate Verification
- Thread the appropriate drill guide into the plate and use drill guide as a ‘joy-stick’ to verify proper plate selection.

4 Plate Bend
- Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation
- The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.

6 Interfragmentary Cannulated Screw Placement
- Place the 1.1 x 150 mm guidewire across the plantar aspect of the joint. Verify placement of the wire fluoroscopically.
- Place the depth gauge over the wire to determine screw length. If the screw will be left proud, add the screw head height to the selected screw.
- Place the countersink over the guidewire and countersink under manual power to recess the head of the screw to the desired depth. Avoid over-countersinking which may compromise the proximal cortex. Washers may be used if the proximal cortex is compromised.
- Place the drill over the guidewire and drill just past the joint.
- Place the screw over the guidewire and drive under manual power until screw is fully seated. Verify the final placement fluoroscopically.
7 Screw Fixation

» Place the screws in the Lapidus plate in the following order by zone.

On-Axis Drilling

» Select the locking drill guide that corresponds with desired pre-drill size.
» Thread drill guide into plate (*always use the locking drill guide when on-axis placement is desired to ensure screws sit flush in the plate.)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

Off-Axis Drilling

» Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

Measure

» A standard style depth gauge is also provided.

Measure

» A standard style depth gauge is also provided.

Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

Compression Slots

» After fixation of the plate on the adjacent side of the joint drill the compression slot first.
» Pre-drill on the side of the compression slot furthest from the joint using the provided offset tissue protector.
» Measurement can be taken from the drill bit at the top of the tissue protector.
» Insert a non-locking screw into the compression hole, removing the temporary fixation pin prior to fully tightening the screw.
» Ensure bicortical fixation for maximum compression.

Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.
TMT FUSION.

1 Surgical Approach
» Perform dorsal incision directly over the TMT joint.

2 Joint Preparation
» Position the distractor over the joint.
» Using the distractor as a guide, insert one 2.5 mm distractor pin on each side of the joint.
» Distract the joint until adequate exposure is achieved.
» Remove all articular cartilage exposing bleeding bone.
» The 1.6 mm wire may be used to perforate the decorticated joint surfaces.
» Bone graft may be used as needed to facilitate joint fusion.

3 Plate Verification
» Thread the appropriate drill guide into the plate and use drill guide as a “joy-stick” to verify proper plate selection.

4 Plate Bend
» Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation
» The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.
6 Screw Fixation

» Place the screws in the TMT Fusion plate in the following order by zone.

1. On-Axis Drilling*

» Select the locking drill guide that corresponds with desired pre-drill size.
» Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

2. Measure

» A standard style depth gauge is also provided.

3. Off-Axis Drilling*

» Seat the end of polynaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polynaxial drill guide to ensure screw trajectory is within 15° off-axis.)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

4. Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

5. Compression Slots

» After fixation of the plate on the adjacent side of the joint, drill the compression slot first.
» Pre-drill on the side of the compression slot furthest from the Joint using the provided offset tissue protector.
» Measurement can be taken from the drill bit at the top of the tissue protector.
» Insert a non-locking screw into the compression hole, removing the temporary fixation pin prior to fully tightening the screw.
» Ensure bicortical fixation for maximum compression.

6. Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.
EVANS OSTEOTOMY.

1 Surgical Approach
 » Perform longitudinal incision along the calcaneocuboid joint.

2 Osteotomy and Bone Graft Placement
 » Make transverse cut 1-1.5 cm posterior to the calcaneocuboid joint.
 » Finish with a straight osteotome.
 » Insert one 2.5 mm distractor pin half way between the calcaneocuboid joint and the osteotomy.
 » Place the distractor over the 2.5 mm pin and adjust the distractor so the second pin is posterior to the osteotomy and roughly 2 cm from the first pin.
 » Using the distractor as a guide, insert the second 2.5 mm pin through the distractor and distract.
 » When selecting an Evans plate with no wedge, place a structural bone graft wedge into the osteotomy to maintain the correction.
 » Backfill with DBM Putty as needed.

3 Plate Verification
 » Thread the appropriate drill guide into the plate and use drill guide as a "joy-stick" to verify proper plate selection.

4 Plate Bend
 » Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation
 » The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.
6 Screw Fixation

» The Evans plate is universal for the order in which the screws are placed.

A On-Axis Drilling*

» Select the locking drill guide that corresponds with desired pre-drill size.
» Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

» A standard style depth gauge is also provided.

C Off-Axis Drilling*

» Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis)
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

D Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

E Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.
COTTON OSTEOTOMY.

1 Surgical Approach
 » Perform dorsal incision directly over the medial cuneiform.

2 Osteotomy and Bone Graft Placement
 » Identify the center of the medial cuneiform fluoroscopically.
 » Using a micro-sagittal saw, cut through the medial cuneiform.
 » Finish with a straight osteotome.
 » Place a structural bone graft wedge into the osteotomy to maintain the correction.
 » Backfill with DBM Putty as needed.

3 Plate Verification
 » Thread the appropriate drill guide into the plate and use drill guide as a “joy-stick” to verify proper plate selection.

4 Plate Bend
 » Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

5 Provisional Fixation
 » The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.
6 Screw Fixation

» The order in which the screws are placed for the Cotton plate are universal.

A On-Axis Drilling*

» Select the locking drill guide that corresponds with desired pre-drill size.

» Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)

» Drill just past the distal cortex.

» Measurement can be taken from the drill bit at the top of the drill guide.

» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B Measure

» A standard style depth gauge is also provided.

C Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.

D Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.

E Off-Axis Drilling*

» Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)

» Drill just past the distal cortex.

» Measurement can be taken from the drill bit at the top of the drill guide.

» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.
Using a large sagittal saw, cut the calcaneus perpendicular to the longitudinal axis of the calcaneus.

> Finish with a straight osteotome.

Osteotomy

Surgical Approach

> Perform lateral 45 degree incision beginning at the superior aspect of the posterior calcaneal tuberosity.

Plate Verification

> Thread the appropriate drill guide into the plate and use drill guide as a “joy-stick” to verify proper plate selection.

Plate Bend

> Plate contouring (if required). This step will not typically be required, but can be achieved using the provided plate benders. Plates should not be bent back-and-forth, and over-bending should be avoided.

Provisional Fixation

> The selected plate should be provisionally fixed to the bone with the provided temporary fixation pins. Size and placement should be verified visually and fluoroscopically.
Screw Fixation

» Place the screws in the MDCO plate in the following order by zone.

A. On-Axis Drilling

» Select the locking drill guide that corresponds with desired pre-drill size.
» Thread drill guide into plate (*always use the locking drill guide when on-axis screw placement is desired to ensure screws sit flush in the plate.)*
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

B. Measure

» A standard style depth gauge is also provided.

C. Insert Screw

» Using the retaining or straight driver, insert the selected screw into the pre-drilled hole. Seat the head of the screw into the plate but do not finally tighten until all screws are inserted.
» Achieve intraoperative compression using a non-locking screw in the 45 degree diagonal hole located on the plate step.

D. Off-Axis Drilling

» Seat the end of polyaxial drill guide that corresponds with desired pre-drill size into plate (*utilize the polyaxial drill guide to ensure screw trajectory is within 15° off-axis.)*
» Drill just past the distal cortex.
» Measurement can be taken from the drill bit at the top of the drill guide.
» Place screw in each pre-drilled hole prior to moving to the next hole to ensure screws sit flush in the plate.

E. Final

» Using the straight driver, finally tighten all screws taking care not to over-tighten. Verify final placement fluoroscopically.
ORDERING INFORMATION.

M1P Fusion Plate
- **Item No.** MPP1005R
- **Description** MTP Fusion Plate, 5˚
- **MPP1005L** MTP Fusion Plate, 5˚ Left
- **MPP1004U** Lapidus Plate, 4 mm Step
- **MPP1003U** Lapidus Plate, 3 mm Step
- **MPP1002U** Lapidus Plate, 2 mm Step
- **MPP1001U** Lapidus Plate, 1 mm Step
- **MPP1000U** Lapidus Plate, No Step
- **MPP1007R** MTP Fusion Plate, Revision, Right
- **MPP1006R** MTP Fusion Plate, 10˚ Right
- **MPP1005R** MTP Fusion Plate, 10˚
- **MPP1004R** MTP Fusion Plate, 0˚
- **MPP1003R** MTP Fusion Plate, 10˚
- **MPP1001R** MTP Fusion Plate, 0˚
- **MPP1007L** MTP Fusion Plate, Revision, Left
- **MPP1006L** MTP Fusion Plate, 10˚ Left
- **MPP1005L** MTP Fusion Plate, 10˚
- **MPP1004L** MTP Fusion Plate, 0˚ Left
- **MPP1003L** MTP Fusion Plate, 10˚
- **MPP1001L** MTP Fusion Plate, 0˚ Left

Evans Plate
- **Item No.** MPP6010U
- **Description** Evans Plate, 10 mm Wedge
- **MPP6008U** Evans Plate, 8 mm Wedge
- **MPP6006U** Evans Plate, 6 mm Wedge
- **MPP6000U** Evans Plate, No Wedge
- **MPP5000U** Cotton Plate, 2 Hole
- **MPP3005U** TMT Straight Plate, 5 Hole
- **MPP3004U** TMT Straight Plate, 4 Hole
- **MPP3003U** TMT Straight Plate, 3 Hole

Cotton Plate
- **Item No.** MP5000U
- **Description** Cotton Plate, 2 Hole

MDCO Plate
- **Item No.** MPSL3560
- **Description** Locking Screw, 3.5 x 60 mm
- **MPSL3555** Locking Screw, 3.5 x 55 mm
- **MPSL3550** Locking Screw, 3.5 x 50 mm
- **MPSL3548** Locking Screw, 3.5 x 48 mm
- **MPSL3546** Locking Screw, 3.5 x 46 mm
- **MPSL3544** Locking Screw, 3.5 x 44 mm
- **MPSL3540** Locking Screw, 3.5 x 40 mm
- **MPSL3538** Locking Screw, 3.5 x 38 mm
- **MPSL3536** Locking Screw, 3.5 x 36 mm
- **MPSL3534** Locking Screw, 3.5 x 34 mm
- **MPSL3532** Locking Screw, 3.5 x 32 mm
- **MPSL3530** Locking Screw, 3.5 x 30 mm
- **MPSL3528** Locking Screw, 3.5 x 28 mm
- **MPSL3526** Locking Screw, 3.5 x 26 mm
- **MPSL3524** Locking Screw, 3.5 x 24 mm
- **MPSL3522** Locking Screw, 3.5 x 22 mm
- **MPSL3520** Locking Screw, 3.5 x 20 mm
- **MPSL3518** Locking Screw, 3.5 x 18 mm
- **MPSL3516** Locking Screw, 3.5 x 16 mm
- **MPSL3514** Locking Screw, 3.5 x 14 mm
- **MPSL3512** Locking Screw, 3.5 x 12 mm
- **MPSL3510** Locking Screw, 3.5 x 10 mm

2.7 mm Non-Locking Screw
- **Item No.** MPSN2730
- **Description** Non-Locking Screw, 2.7 x 30 mm
- **MPSN2728** Non-Locking Screw, 2.7 x 28 mm
- **MPSN2726** Non-Locking Screw, 2.7 x 26 mm
- **MPSN2724** Non-Locking Screw, 2.7 x 24 mm
- **MPSN2722** Non-Locking Screw, 2.7 x 22 mm
- **MPSN2720** Non-Locking Screw, 2.7 x 20 mm
- **MPSN2718** Non-Locking Screw, 2.7 x 18 mm
- **MPSN2716** Non-Locking Screw, 2.7 x 16 mm
- **MPSN2714** Non-Locking Screw, 2.7 x 14 mm
- **MPSN2712** Non-Locking Screw, 2.7 x 12 mm
- **MPSN2710** Non-Locking Screw, 2.7 x 10 mm

3.5 mm Non-Locking Screw
- **Item No.** MPSN3510
- **Description** Non-Locking Screw, 3.5 x 10 mm
- **MPSN3508** Non-Locking Screw, 3.5 x 8 mm
- **MPSN3506** Non-Locking Screw, 3.5 x 6 mm
- **MPSN3504** Non-Locking Screw, 3.5 x 4 mm
- **MPSN3502** Non-Locking Screw, 3.5 x 2 mm
- **MPSN3500** Non-Locking Screw, 3.5 x 0 mm

M1I Straight Plate
- **Item No.** MPP3004U
- **Description** TMT Straight Plate, 4 Hole
- **MPP3005U** TMT Straight Plate, 5 Hole

2.7 mm Locking Screw
- **Item No.** MPSL2710
- **Description** Locking Screw, 2.7 x 10 mm
- **MPSL2708** Locking Screw, 2.7 x 12 mm
- **MPSL2706** Locking Screw, 2.7 x 14 mm
- **MPSL2704** Locking Screw, 2.7 x 16 mm
- **MPSL2702** Locking Screw, 2.7 x 18 mm
- **MPSL2720** Locking Screw, 2.7 x 20 mm
- **MPSL2718** Locking Screw, 2.7 x 16 mm
- **MPSL2716** Locking Screw, 2.7 x 14 mm
- **MPSL2714** Locking Screw, 2.7 x 12 mm
- **MPSL2712** Locking Screw, 2.7 x 10 mm

TMT Offset Plate
- **Item No.** MPN4004U
- **Description** TMT Offset Plate, 4 Hole
- **MPN4005U** TMT Offset Plate, 5 Hole

TMT Straight Plate
- **Item No.** MPN6004U
- **Description** Evans Plate, 4 mm Wedge
- **MPN6005U** Evans Plate, 5 mm Wedge
- **MPN6006U** Evans Plate, 6 mm Wedge
- **MPN6007U** Evans Plate, 7 mm Wedge
- **MPN6008U** Evans Plate, 8 mm Wedge
- **MPN6009U** Evans Plate, 9 mm Wedge

Lapidus Plate
- **Item No.** MPP2006U
- **Description** Lapidus Plate, 6 mm Step
- **MPP2005U** Lapidus Plate, 5 mm Step
- **MPP2004U** Lapidus Plate, 4 mm Step

MDCO Plate
- **Item No.** MPSL7005U
- **Description** MDCO Plate, 5 mm Step
- **MPSL7004U** MDCO Plate, 4 mm Step
- **MPSL7003U** MDCO Plate, 3 mm Step
- **MPSL7002U** MDCO Plate, 2 mm Step
- **MPSL7001U** MDCO Plate, 1 mm Step

Medline.com
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN20116</td>
<td>Phalangeal Reamer, 16 mm</td>
</tr>
<tr>
<td>MPN20118</td>
<td>Phalangeal Reamer, 18 mm</td>
</tr>
<tr>
<td>MPN20120</td>
<td>Phalangeal Reamer, 20 mm</td>
</tr>
<tr>
<td>MPN20122</td>
<td>Phalangeal Reamer, 22 mm</td>
</tr>
</tbody>
</table>

Tissue Protectors

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN40003</td>
<td>Tissue Protector, 2.0 mm</td>
</tr>
<tr>
<td>MPN40004</td>
<td>Tissue Protector, 2.8 mm</td>
</tr>
</tbody>
</table>

MTP Fusion Metatarsal Reamers

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN20016</td>
<td>Metatarsal Reamer, 16 mm</td>
</tr>
<tr>
<td>MPN20018</td>
<td>Metatarsal Reamer, 18 mm</td>
</tr>
<tr>
<td>MPN20020</td>
<td>Metatarsal Reamer, 20 mm</td>
</tr>
<tr>
<td>MPN20022</td>
<td>Metatarsal Reamer, 22 mm</td>
</tr>
</tbody>
</table>

Drivers

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN30001</td>
<td>Driver, Straight, T15</td>
</tr>
<tr>
<td>MPN30002</td>
<td>Driver, Retaining, T15</td>
</tr>
<tr>
<td>MSN30002</td>
<td>Driver, Cannulated, T10</td>
</tr>
</tbody>
</table>

Drill Guides

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN40001</td>
<td>Drill Guide, Locking, 2.0 mm</td>
</tr>
<tr>
<td>MPN40002</td>
<td>Drill Guide, Locking, 2.8 mm</td>
</tr>
</tbody>
</table>

MTP Fusion Phalangeal Reamers

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN20116</td>
<td>Phalangeal Reamer, 16 mm</td>
</tr>
<tr>
<td>MPN20118</td>
<td>Phalangeal Reamer, 18 mm</td>
</tr>
<tr>
<td>MPN20120</td>
<td>Phalangeal Reamer, 20 mm</td>
</tr>
<tr>
<td>MPN20122</td>
<td>Phalangeal Reamer, 22 mm</td>
</tr>
</tbody>
</table>

Drill Bits

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN10020</td>
<td>Drill Bit, 2.0 mm</td>
</tr>
<tr>
<td>MPN10028</td>
<td>Drill Bit, 2.8 mm</td>
</tr>
<tr>
<td>MSN10004</td>
<td>Drill Bit, Cannulated, 2.5 mm</td>
</tr>
</tbody>
</table>

Depth Gauges

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN40006</td>
<td>Depth Gauge for 6.0 mm Wire</td>
</tr>
<tr>
<td>MSN40001</td>
<td>Depth Gauge for 15.0 mm Wire, Cannulated</td>
</tr>
</tbody>
</table>

Plate Benders

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN40005</td>
<td>Plate Bender</td>
</tr>
</tbody>
</table>

Polyaxial Drill Guide

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN40007</td>
<td>Drill Guide, Polyaxial, 2.0/2.8 mm</td>
</tr>
</tbody>
</table>

Depth Gauges

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN40006</td>
<td>Depth Gauge for 60 mm Wire</td>
</tr>
<tr>
<td>MSN40001</td>
<td>Depth Gauge for 150 mm Wire, Cannulated</td>
</tr>
</tbody>
</table>

Binders

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSN90001</td>
<td>Handle, AO/QC, Ratcheting, Cannulated</td>
</tr>
</tbody>
</table>

Polyaxial Drill Guide

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN40007</td>
<td>Drill Guide, Polyaxial, 2.0/2.8 mm</td>
</tr>
</tbody>
</table>

Guidewires

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS51610</td>
<td>Guidewire, 1.6 x 150 mm, NT</td>
</tr>
<tr>
<td>MS51150</td>
<td>Guidewire, 1.1 x 150 mm, NT</td>
</tr>
</tbody>
</table>

Temporary Fixation Pins

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPFP110</td>
<td>Temporary Fixation Pin, 11 x 10 mm</td>
</tr>
<tr>
<td>MPFP120</td>
<td>Temporary Fixation Pin, 11 x 20 mm</td>
</tr>
</tbody>
</table>

Temporary Fixation Pins

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPFP110</td>
<td>Temporary Fixation Pin, 11 x 10 mm</td>
</tr>
<tr>
<td>MPFP120</td>
<td>Temporary Fixation Pin, 11 x 20 mm</td>
</tr>
</tbody>
</table>

Washers

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSW03035</td>
<td>2.0/3.5 Washer (for Cannulated Screws)</td>
</tr>
</tbody>
</table>

Washers

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSW03035</td>
<td>2.0/3.5 Washer (for Cannulated Screws)</td>
</tr>
</tbody>
</table>

Countersink

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSN20003</td>
<td>Countersink, Cannulated, 3.0/3.5 Headed</td>
</tr>
</tbody>
</table>

Countersink

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSN20003</td>
<td>Countersink, Cannulated, 3.0/3.5 Headed</td>
</tr>
</tbody>
</table>

Cannulated Screws

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD0325</td>
<td>Screw, Cannulated, Headed, 3.5 x 25 mm</td>
</tr>
<tr>
<td>MSD0326</td>
<td>Screw, Cannulated, Headed, 3.5 x 26 mm</td>
</tr>
<tr>
<td>MSD0327</td>
<td>Screw, Cannulated, Headed, 3.5 x 27 mm</td>
</tr>
<tr>
<td>MSD0328</td>
<td>Screw, Cannulated, Headed, 3.5 x 28 mm</td>
</tr>
<tr>
<td>MSD0329</td>
<td>Screw, Cannulated, Headed, 3.5 x 29 mm</td>
</tr>
<tr>
<td>MSD0330</td>
<td>Screw, Cannulated, Headed, 3.5 x 30 mm</td>
</tr>
<tr>
<td>MSD0331</td>
<td>Screw, Cannulated, Headed, 3.5 x 31 mm</td>
</tr>
<tr>
<td>MSD0332</td>
<td>Screw, Cannulated, Headed, 3.5 x 32 mm</td>
</tr>
<tr>
<td>MSD0333</td>
<td>Screw, Cannulated, Headed, 3.5 x 33 mm</td>
</tr>
<tr>
<td>MSD0334</td>
<td>Screw, Cannulated, Headed, 3.5 x 34 mm</td>
</tr>
<tr>
<td>MSD0335</td>
<td>Screw, Cannulated, Headed, 3.5 x 35 mm</td>
</tr>
<tr>
<td>MSD0336</td>
<td>Screw, Cannulated, Headed, 3.5 x 36 mm</td>
</tr>
<tr>
<td>MSD0337</td>
<td>Screw, Cannulated, Headed, 3.5 x 37 mm</td>
</tr>
<tr>
<td>MSD0338</td>
<td>Screw, Cannulated, Headed, 3.5 x 38 mm</td>
</tr>
<tr>
<td>MSD0339</td>
<td>Screw, Cannulated, Headed, 3.5 x 39 mm</td>
</tr>
<tr>
<td>MSD0340</td>
<td>Screw, Cannulated, Headed, 3.5 x 40 mm</td>
</tr>
</tbody>
</table>

System Tray

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPTFOOT1</td>
<td>System Tray</td>
</tr>
</tbody>
</table>
ADVANCING THE HEALTH OF HEALTHCARE™.

Medline exists to keep healthcare healthy. We’re in an enviable position to do it. Privately held and 100% debt free, we have the freedom and flexibility to develop advanced orthopedic systems, and other innovative clinical and product solutions for your unique needs. Plus, the power and capital to deliver on our promises.